
Fmap, LiftA2 & LiftA3 Notes 
1 

Fmap: 
- fmap :: Functor f => (a -> b) -> f a -> f b 
- This means that fmap takes a function and a functor and applies the function over the 

functor. 
- E.g. 

 
- Can be thought of as liftA1. This will be explained below. 

<*>: 
- Also called ​ap​. 
- (<*>) :: f (a -> b) -> f a -> f b 
- <*> takes a functor with a function in it and another functor and applies the function to 

the second functor. 
- E.g. 

 
- Note:​ You need to do ​import Control.Applicative​ to use ap. 

LiftA2: 
- liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c 
- If you compare the above line with fmap, you’ll see that they’re very similar, but fmap 

takes 1 functor while applicative takes 2. Furthermore, the function fmap uses only takes 
in 1 argument, while the function liftA2 uses takes 2 arguments. This is why we can think 
of fmap as liftA1. 

- E.g. 

 



Fmap, LiftA2 & LiftA3 Notes 
2 

- We can use fmap and <*> to implement liftA2. 
Here’s an implementation of fmap, pure, <*> and liftA2 for the functor Maybe. 

 
Note that for liftA2, we’re not using fmap and <*> to implement it. 
Here’s how we can use fmap and <*> to implement liftA2. 
liftA2 f xs ys = (fmap f xs) <*> ys 
E.g. 

 
The reason why ​liftA2 f xs ys = (fmap f xs) <*> ys​ is because fmap applies the 
function, f, on xs, so xs is a functor with a function in it, and then <*> applies that 
function onto ys. 

LiftA3: 
- liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d 
- This is similar to liftA2, but it takes 3 arguments instead of 2. 
- We can implement liftA3 using fmap and <*>. 

liftA3 f xs ys zs = (fmap f xs) <*> ys <*> zs 
E.g. 

 
- We can implement liftA3 using liftA2 and <*>. 

liftA3 f xs ys zs = (liftA2 f xs ys) <*> zs 



Fmap, LiftA2 & LiftA3 Notes 
3 

E.g. 

 
This is because ​(fmap f xs) <*> ys​ is equivalent to ​liftA2 f xs ys​. 

In general: 
- If you have liftAn, where n > 1, you can implement in the following way: 

1. liftAn f a b c … z = (fmap f a) <*> b <*> c … <*> z 
2. liftAn f a b c … y z = (liftA(n-1) f a b c … y) <*> z 


